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ABSTRACT

Diabetes mellitus can potentially be treated with islet transplantation, but additional sources of b
cells are necessary to overcome the short supply of donor pancreases. Although controversy still
exists, it is generally believed that the postnatal expansion of the b-cell mass is mainly through
pre-existing b-cell replication. Thus, understanding the molecular mechanisms underlying the regu-
lationofb-cell proliferationmight lead toclinical strategies for increasingb-cell numbers,both invitro
and in vivo. Macrophages have a well-recognized role in the development of insulitis as part of the
pathogenesis of type 1 diabetes. However, a potential role formacrophage polarization, triggered by
specific environmental stimuli, in promoting b-cell proliferation has only recently been appreciated.
In the present review, we discuss several independent studies, using different regeneration models,
that demonstrate a substantial inductive role for macrophages inb-cell proliferation. Additional dis-
section of the involved cell-cell crosstalk through specific signal transduction pathways is expected to
improve our understanding ofb-cell proliferation andmight facilitate the currentb-cell replacement
therapy. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:1–4

SIGNIFICANCE

New independent findings from different b-cell regeneration models, contributed by different re-
search groups, have provided compelling evidence to highlight a previously unappreciated role for
macrophages in b-cell proliferation. Additional dissection of the underlying mechanisms and cell-
cell crosstalk might shed new light on strategies to increase the functional b-cell mass in vivo and
on b-cell replacement therapies.

INTRODUCTION

Diabetes mellitus can potentially be treated with
islet transplantation. Nevertheless, the short sup-
ply of donor pancreases constitutes a formidable
obstacle towidespread clinical applications [1–5].
Although great efforts have been made to iden-
tify, isolate, and purify b-cell progenitors in the
adult pancreas [6–13], mounting evidence sug-
gests thatb-cell neogenesis does not significantly
contribute to the functional b-cell mass in the
adult pancreas [14–28]. Most reports of b-cell
transdifferentiation required genetic manipula-
tions [29, 30].

Thus, increasing attention has been drawn to
the induction of b-cell replication in vitro and in
vivo, because mature b cells have a very slow pro-
liferation rate [4] that declines further with age
[31–36].Macrophages have awell-recognized role
in the development of insulitis as part of the path-
ogenesis of type 1 diabetes (T1D). However, a po-
tential role for macrophage polarization, triggered
by specific environmental stimuli, in promoting

b-cell proliferation has only recently been appre-
ciated [37–40]. In the present review, we discuss
several independent studies using different re-
generation models to demonstrate a substantial
role formacrophages inb-cell proliferation. Addi-
tional dissection of the involved cell-cell crosstalk
through specific signal transduction pathways is
expected to improve our understanding of b-cell
proliferation and might facilitate the current
b-cell replacement therapy.

MACROPHAGE BIOLOGY

Macrophages are a type of white blood cell that
engulf and digest cellular debris, foreign substan-
ces, microbes, and cancer cells in a process called
phagocytosis. In addition to the macrophages
that display this classic phenotype, designated
M1 macrophages, another macrophage subtype,
designated M2, is entirely different. The degree
to which a given macrophage bears M1 or M2
characteristics is termed “polarization.” The M1
macrophages are induced by T helper 1 (Th1)
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cell-derived interferon-g and microbial products and respond
to microbial infection with an enhanced phagocytic capability
through the expression of inducible nitric oxide synthase and
the secretion of proinflammatory cytokines, such as tumor necro-
sis factor-a, interleukin-12 (IL-12), IL-1b, and IL-23, and toxic
mediators, such as reactive oxygen species and nitric oxide
[41–44].M2macrophages are inducedduringTh2-type responses
through stimulation with IL-4/IL-13 and are responsible for
wound healing and tissue remodeling functions [41–44]. Specifi-
cally, M2 macrophages are known to secrete a wide range of
chemokines,enzymes, and growth factors to promote neovascu-
larization, fibrosis, and tissue repair [41–44]. TheM1/M2 polariza-
tion of tissue-destructive versus tissue-reparative macrophages
is now regarded as a simplified categorization of a complex cell
lineage, andmore andmoremacrophage phenotypes in between
the two polar opposites are being described [41–44].

MACROPHAGES IN T1D AND TYPE 2 DIABETES

It has been shown that islets do contain resident macrophages
[45, 46]. Macrophages play an essential role in the development
of T1D. The inactivation of macrophages in nonobese diabetic
(NOD) mice prevents the occurrence of diabetes [47], because
an environment with macrophages is necessary for differentia-
tion of anti-b cell-cytotoxic T cells [48]. M1 macrophages, along
with a subpopulationofCD4+T lymphocytes that secretehigh lev-
els of IL-17 (Th17 cells) and CD8+ cytotoxic T cells, are together
considered to be the major cell types that promote the develop-
ment of T1D [49–52].

Obesity induces insulin resistance, which is a predisposing
factor for the development of type 2 diabetes (T2D). Insulin resis-
tance is promoted by a transition in macrophage polarization
from the M2 activation state, maintained by STAT6 and peroxi-
some proliferator-activated receptors, to a classic M1 activation
state driven by nuclear factor-kB (NF-kB), activator protein 1, and
other related factors [53–56]. Previous studies in T2Dhave shown
that M1 macrophages are associated with increasing inflamma-
tion, obesity, and insulin resistance, and M2 macrophages are
associated with a reduction in both obesity and insulin resistance
[49, 50]. Thus,macrophages play anonredundant role in thepath-
ogenesis of both T1D and T2D [57].

Very recently, epigenetic modifications in spontaneous autoim-
mune diseases have been identified. In line with this concept,
a small-molecule inhibitor of a family of bromodomain-containing
transcriptional regulators was recently shown to induce macro-
phages toadoptananti-inflammatoryphenotype,whichsuppressed
the development of T1D in NOD mice in an NF-kB-dependent
manner [58]. In this model, islet inflammation was inhibited,
and b cell regeneration occurred [58].

MACROPHAGES IN b-CELL PROLIFERATION

Macrophages, especially M2 macrophages, have been shown to
secret a variety of trophic factors, including vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF), transform-
ing growth factor-b (TGF-b), angiopoietins, andWnts, to regulate
development, tissue remodeling, and tissue repair. However, ev-
idenceof their role inpromotingb-cell proliferationhasonlybeen
reported recently [37–40].

First, in a regulatable b cell-specific VEGF overexpression
mouse model, which results in significant b cell loss, withdrawal
of VEGF overexpression led to b-cell proliferation, replenishing
the reduced b-cell mass [39]. In this model, b-cell proliferation
was found to depend on the recruitment of bone marrow-
derived macrophages and their subsequent crosstalk with islet
endothelial cells. Trophic factors released locally by recruited
macrophages were proposed as a trigger for b-cell proliferation
[39].

In another b cell regeneration model, in which mesenchy-
mal stem cells were transplanted into the streptozotocin-
treated mouse pancreas, significant b-cell proliferation was
detected, contributing to the regeneration of functional b-cell
mass [40]. In this model, recruited macrophages were found
to be required for the b-cell proliferation to occur. In addition,
Wnt signaling was proposed to be responsible for the cross-talk
between M2 macrophages and b cells to induce b-cell prolifer-
ation [40] (Fig. 1).

In a b2cell injury/regeneration model, triggered by diphthe-
ria toxin receptor-mediated conditional targeted cell death [59],
b-cell regeneration was found to be attributable to the prolifer-
ation of surviving b cells, which was dependent on recruited M2
macrophages, involving the Wnt signaling pathway [38] (Fig. 1).

In addition to these three independent studies, we used an-
other model of enhanced b-cell proliferation, partial pancreatic
ductal ligation (PDL) [37]. We have previously compared two ex-
perimentalmodels ofb-cell proliferation, partial pancreatectomy
(PPX) and PDL [19, 20, 60].b-Cell proliferation after PPX is robust,
presumably resulting froman increasedworkload demand on the
residual b cells after surgical removal of a significant amount of
the functional b-cell mass. In contrast, inflammation appears to
be the major trigger for b-cell proliferation after PDL [20]. In line
with this view, tissue injury in thePDLpancreas is accompanied by
substantial infiltration of inflammatory cells, which appears to
create a proliferation niche for b cells, such as has been seen in
other regeneration models [38–40]. With the help of a recently

Figure 1. Signaling pathways through which macrophages regulate
b-cell replication. M2 macrophages, not only release TGF-b1 to di-
rectly induce upregulation of SMAD7 in b cells, but also release
EGF to activate EGFR signaling that inhibits TGF-b1-activated SMAD2
nuclear translocation, resulting in inhibition of TGF-b receptor signal-
ing. SMAD7 promotes b-cell proliferation by increasing CyclinD1 and
CyclinD2 and by inducing nuclear exclusion of p27. M2 macrophages
also secreteWnt ligands to activate theWnt signaling pathway,which
induces nuclear translocation and retention of b-catenin to promote
b-cell replication. Abbreviations: EGF, epidermal growth factor;
EGFR, EGF receptor; TGF-b1, transforming growth factor-b1.

2 Macrophages in b-Cell Proliferation

©AlphaMed Press 2015 STEM CELLS TRANSLATIONAL MEDICINE

 by Janko M
rkovacki on M

ay 1, 2015
http://stem

cellstm
.alpham

edpress.org/
D

ow
nloaded from

 

http://stemcellstm.alphamedpress.org/


developed intraductal infusion system [18, 61, 62], we found that
M2 macrophages, not only release TGF-b1 to directly induce
upregulation of SMAD7 inb-cells, but also release EGF to activate
EGF receptor signaling, which inhibits TGF-b1-stimulated SMAD2
nuclear translocation, resulting in inhibition of TGF-b receptor
signaling. SMAD7 promotes b-cell proliferation by increasing
CyclinD1 and CyclinD2 and by inducing nuclear exclusion of p27
[37] (Fig. 1).

FUTURE DIRECTIONS

From these recent studies, we hypothesize that a proliferation
niche is needed for efficient b-cell proliferation and that macro-
phagesmightplayapivotal role inestablishingthisniche[37–40,63].
b-Cell proliferationmight involve the coordination ofmultiple pro-
cesses, such as the detachment of cell-cell contacts, modulation of
extracellularmatrix, and releaseof growth factors, both locally and
systemically [64]. Macrophages, with their high plasticity and phe-
notypic diversity, appear toplay a critical role inb-cell proliferation
by creating crosstalk among different cell types, including b cells,
non-b endocrine cells, endothelial cells, mesenchymal cells, and
other circulation-derived blood cells (Fig. 2). Additional elucidation
of this crosstalk might substantially enhance our understanding of
b-cell proliferation.

Because acinar cells have been shown to reprogram into
insulin-producing cells by soluble growth factors [13] or genetic
alterations [29, 30], it would be interesting to examine the role
of macrophages in these models. Moreover, although a role for
M2 macrophages in promoting b-cell proliferation in mice has
beenwell described, any similar role forM2macrophages in hu-
manb-cell proliferation has not been examined. A coculture ex-
periment could potentially be applied to address this point.

CONCLUSION

Taken together, new independent findings from different b-cell
regeneration models, contributed by different research groups,
have provided compelling evidence to highlight a previously un-
appreciated role for macrophages in b-cell proliferation. Addi-
tional dissection of the underlying mechanisms and cell-cell
crosstalk could shed new light on strategies to increase the func-
tional b-cell mass in vivo and on b-cell replacement therapies.
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